Stem cells generated in live mice

Featured Article
Academic Journal
Main Category: Stem Cell Research
Also Included In: Biology / Biochemistry
Article Date: 12 Sep 2013 – 8:00 PDT

The hope is that harnessing this ability to differentiate into any cell type will lead to treatments that can cure diseases like Alzheimer’s, Parkinson’s and diabetes.


For any corrections of factual information, or to contact the editors please use our feedback form.

Please send any medical news or health news press releases to:

Thus, there is a need to find alternative ways to make stem cells that are as good as embryonic stem cells.

However, there are ethical problems about sourcing embryonic stem cells, as well as practical difficulties, since they have a very short lifespan during the early development of the embryo.

Written by Catharine Paddock PhD

MLA

This has never been seen before in nature, says lead author María Abad.

Paddock, Catharine. “Stem cells generated in live mice.” Medical News Today. MediLexicon, Intl., 12 Sep. 2013. Web.
12 Sep. 2013. <http://www.medicalnewstoday.com/articles/266015.php>

Reprogramming in vivo produces teratomas and iPS cells with totipotency features; María Abad, Lluc Mosteiro,

Cristina Pantoja, Marta Cañamero, Teresa Rayon, Inmaculada Ors, Osvaldo Graña, Diego Megías, Orlando Domínguez, Dolores

Martínez, Miguel Manzanares, Sagrario Ortega & Manuel Serrano; Nature Published online 11 September 2013;

DOI:10.1038/nature12586; Abstract.

These included the three types of tissue (ectoderm, mesoderm and endoderm) that develop in embryos and external structures, like the Vitelline membrane, as well as early signs of blood cells.

“Totipotent” stem cells generated without petri dish

In another paper published recently, scientists in China reported how they found a safe and easy way to make stem cells.

The team believes the achievement brings the potential to use stem cell technology in regenerative medicine a step closer.

A team of scientists in Spain has reprogrammed adult cells in live mice to revert to stem cells that appear as potent as embryonic stem cells.

They now plan to find out if their new stem cells can produce different tissue types, such as that of organs like the pancreas, liver and kidney.

Regenerating tissue in place of damaged tissue

One possibility that has been hotly pursued is to try and “reverse engineer” adult cells – that is, cells that once used to be stem cells but have fully differentiated into a particular type of cell – back to their undifferentiated, primitive state.

If you write about specific medications or operations, please do not name health care professionals by name.

Please note: If no author information is provided, the source is cited instead.

Dr. Serrano, who is director of the Molecular Oncology Program and head of the Tumoral Suppression Laboratory at CNIO, adds:

Embryonic stem cells represent the “gold standard” in stem cell research and regenerative medicine, since they are the only stem cells capable of differentiating into any of the hundreds of cell types in the body.

Totipotent stem cells are more versatile

Note: Any medical information published on this website is not intended as a substitute for informed medical advice and you should not take any action before consulting with a health care professional. For more information, please read our terms and conditions.

While the step they have taken is a huge one and sends regenerative medicine and tissue engineering research in a new direction, the researchers say they still have far to go before their stem cells are ready for any kind of clinical use.

Yamanaka was awarded the Nobel Prize in Medicine in 2012 in recognition of the importance of this work to regenerative medicine.

The team reports its findings online this week in the journal Nature. The study is the first to achieve in living tissue what so far has only been possible in a petri dish.

They say the state of undifferentiation they achieved in the totipotent stem cells is equivalent to that found in human embryos at the 72-hour stage of development, when they comprise only 16 cells.

The Spanish Ministry of Economy & Competitiveness, the European Research Council, the Madrid regional government, and the AXA, Botín, and Ramón Areces Foundations funded the team’s work.

The totipotent stem cells even produced (in the chest and abdominal cavities of the mice) tissue structures that occur in the early stages of a new embryo.

This represents a much earlier embryonic state than that shown by iPSCs, with greater capacity for differentiation, and potentially placing the totipotent stem cells closer to the gold standard.

All opinions are moderated before being included (to stop spam). We reserve the right to amend opinions where we deem necessary.


Copyright: Medical News Today

Not to be reproduced without permission of Medical News Today
stem cell research section for the latest news on this subject.

Contact Our News Editors

Additional source: Spanish National Cancer Research Centre (CNIO) news release (pdf)

11 September 2013.

Please use one of the following formats to cite this article in your essay, paper or report:

He and his colleagues were also able to make the stem cells survive outside of mice, in a culture. This makes it easier to manipulate them and carry out further experiments.

Serrano says this suggests their stem cells are more versatile than iPSCs produced in the lab, “whose potency generates the different layers of the embryo but never tissues that sustain the development of a new embryo, like the placenta.”


APA


“We can now start to think about methods for inducing regeneration locally and in a transitory manner for a particular damaged tissue.”



privacy policy for more information.

They managed to genetically manipulate adult cells in living mice by activating the four genes from the Yamanaka experiment and make the cells regress to an earlier evolutionary state. In effect, the cells became embryonic stem cells in multiple adult tissues and organs.

In 2006, a Japanese team led by Shinya Yamanaka showed it was possible, in cell culture using just four genes, to reprogram adult cells to behave almost like embryonic stem cells. They named the cells induced pluripotent stem cells (iPSCs).

Current ratings for:
Stem cells generated in live mice

The team also found the stem cells they generated were even more like embryonic stem cells than those made using cultured cells. They say their cells’ ability to differentiate is more than pluripotent, it is “totipotent,” a primitive state that has never before been generated in the lab.

In this latest study, scientists led by Dr. Manuel Serrano, a cancer researcher at the Spanish National Cancer Research Centre (CNIO), managed to generate directly in live mice what Yamanaka and colleagues achieved, but without the need to pass through the petri dish stage.


Share this post:

If you are a possible stem cell patient, find ways to get a stem cell cure to have much better health and youthfulness

If you're a medical doctor and would like to learn and incorporate various stem cell treatments into your medical practice, be sure to get the proper stem cell medical training


Recent Posts