Main Category: Huntingtons Disease
Also Included In: Stem Cell Research
Article Date: 10 Jun 2013 – 0:00 PDT
After having established the ability to generate new replacement neurons in mouse models of Huntington’s disease, the researchers also demonstrated that they could replicate this technique in the brains of normal squirrel monkeys, a step that brings the research much closer to tests in humans.
Researchers have been able to mobilize the brain’s native stem cells to replenish a type of neuron lost in Huntington’s disease. In the study, which appears in the journal Cell Stem Cell, the scientists were able to both trigger the production of new neurons in mice with the disease and show that the new cells successfully integrated into the brain’s existing neural networks, dramatically extending the survival of the treated mice.
Note: Any medical information published on this website is not intended as a substitute for informed medical advice and you should not take any action before consulting with a health care professional. For more information, please read our terms and conditions.
For Goldman, the idea behind his strategy to treat the disease emerged from his decades-long study of neural plasticity in canaries. Songbirds like canaries have intrigued biologists because of their ability – unique in the animal kingdom – to lay down new neurons in the adult brain. This process, called adult neurogenesis, was first discovered by Goldman and Fernando Nottebohm of the Rockefeller University in the early 1980s, when the two realized that when learning new songs new neurons were added to regions of the bird’s brain responsible for vocal control.
Please note: If no author information is provided, the source is cited instead.
“This study demonstrates the feasibility of a completely new concept to treat Huntington’s disease, by recruiting the brain’s endogenous neural stem cells to regenerate cells lost to the disease,” said University of Rochester Medical Center (URMC) neurologist Steve Goldman, M.D., Ph.D., co-director of Rochester’s Center for Translational Neuromedicine.
Humans already possess the ability to create new neurons. Goldman’s lab demonstrated in the 1990s that a font of neuronal precursor cells exist in the lining of the ventricles, structures found in the core of the human brain. In early development, these cells are actively producing neurons. However, shortly after birth the neural stem cells stop generating neurons and instead produce glia, a family of support cells that pervade the central nervous system. Some parts of the human brain continue to produce neurons into adulthood, the most prominent example is the hippocampus where memories are formed and stored. But in the striatum, the region of the brain that is devastated by Huntington’s disease, this capability is “switched off” in adulthood.
The researchers were able to significantly extend the survival of the treated mice, in some cases doubling their life expectancy. The researchers also devised a way to tag the new neurons and observed that the cells extended fibers to distant targets within the brain and establish electrical communication.
University of Rochester Medical Center. “Mouse Brain Cells Coaxed To Regenerate Cells Lost In Huntington’s Disease.” Medical News Today. MediLexicon, Intl., 10 Jun. 2013. Web.
1 Jul. 2013. <http://www.medicalnewstoday.com/releases/261605.php>
“The sustained delivery of BDNF and noggin into the adult brain was clearly associated with both increased neurogenesis and delayed disease progression,” said Goldman. “We believe that our data suggest the feasibility of this process as a viable therapeutic strategy for Huntington’s disease.” huntingtons disease section for the latest news on this subject.