Main Category: Vascular
Also Included In: Heart Disease; Diabetes; Stem Cell Research
Article Date: 17 Jul 2013 – 0:00 PDT
The MGH team adapted a method originally used to derive endothelial cells from human embryonic stem cells (hESCs). But while that method used a single protein marker to identify vascular progenitors, the researchers sorted out iPSC-derived cells that expressed not only that protein but also two other protein markers of vascular potential. They then expanded that population using a culture system that team members had previously developed to differentiate endothelial cells from hESCs and confirmed that only iPSC-derived cells expressing all three markers generated endothelial cells with the full potential of forming blood vessels.
Hospital, Massachusetts General. “Long-Lasting Blood Vessels Generated From Reprogrammed Human Cells.” Medical News Today. MediLexicon, Intl., 17 Jul. 2013. Web.
17 Jul. 2013. <http://www.medicalnewstoday.com/releases/263419.php>
Because patients with type 1 diabetes (T1D), which can damage blood vessels, could benefit from the ability to make new blood vessels, the researchers wanted to determine whether iPSCs derived from the cells of such patients could help generate functional blood vessels. As with cells from healthy individuals, precursors derived from T1D-iPSCs were able to generate functional, long-lasting blood vessels. However, the researchers note, different lines of the T1D-iPSCs – including different lines derived from the same patient – showed differences in cell-generating potential, indicating the need to better understand the underlying mechanisms.
The ability to regenerate or repair blood vessels could make a crucial difference in the treatment of cardiovascular disease – which continues to be the number one cause of death in the U.S. – and other conditions caused by blood vessel damage, such as the vascular complications of diabetes. In addition, providing a vascular supply to newly-generated tissue remains one of the greatest barriers facing efforts to build solid organs through tissue engineering.
For any corrections of factual information, or to contact the editors please use our feedback form.
Please send any medical news or health news press releases to:
Please note: If no author information is provided, the source is cited instead.
All opinions are moderated before being included (to stop spam)
“The potential applications of iPSC-generated blood vessels are broad – from repairing damaged vessels supplying the heart or brain to preventing the need to amputate limbs because of the vascular complication of diabetes,” says co-lead author Rekha Samuel, MD, of the Steele Laboratory, now at the Christian Medical College, Vellore, India. “But first we need to deal with such challenges as the variability of iPSC lines and the long-term safety issues involved in the use of these cells, which are being addressed by researchers around the world. We also need better ways of engineering the specific type of endothelial cell needed for specific organs and functions.”
Several previous studies have generated from iPSCs the types of cells required to build blood vessels — endothelial cells that line vessels and connective tissue cells that provide structural support – but those cells could not form long-lasting vessels once introduced into animal models. “The biggest challenge we faced during the early phase of this project was establishing a reliable protocol to generate endothelial cell lines that produced great quantities of precursor cells that could generate strong, durable blood vessels,” says co-senior author Dai Fukumura, MD, PhD, also of the Steele Lab.
vascular section for the latest news on this subject.